Abstract

Traditional machine learning (ML) approaches learn to recognize patterns in the data but fail to go beyond observing associations. Such data-driven methods can lack generalizability when the data is outside the independent and identically distributed (i.i.d) setting. Using causal inference can aid data-driven techniques to go beyond learning spurious associations and frame the data-generating process in a causal lens. We can combine domain expertise and traditional ML techniques to answer causal questions on the data. In this paper, we estimate the causal effect of Pre-Exposure Prophylaxis (PrEP) on mortality in COVID-19 patients from an observational dataset of over 120,000 patients. With the help of medical experts, we hypothesize a causal graph that identifies the causal and non-causal associations, including the list of potential confounding variables. We use estimation techniques such as linear regression, matching, and machine learning (meta-learners) to estimate the causal effect. On average, our estimates show that taking PrEP can result in a 2.1% decrease in the death rate or a total of around 2,540 patients' lives saved in the studied population.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call