Abstract

The importance of reducing processor-memory bandwidth is recognized in two distinct situations: single board computer systems and microprocessors of the future. Cache memory is investigated as a way to reduce the memory-processor traffic. We show that traditional caches which depend heavily on spatial locality (look-ahead) for their performance are inappropriate in these environments because they generate large bursts of bus traffic. A cache exploiting primarily temporal locality (look-behind) is then proposed and demonstrated to be effective in an environment where process switches are infrequent. We argue that such an environment is possible if the traffic to backing store is small enough that many processors can share a common memory and if the cache data consistency problem is solved. We demonstrate that such a cache can indeed reduce traffic to memory greatly, and introduce an elegant solution to the cache coherency problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.