Abstract

High-resolution hydroclimate proxy records are essential for distinguishing natural hydroclimate variability from possible anthropogenically-forced changes, since instrumental precipitation observations are too short to represent the whole spectrum of natural variability. In Northern Europe, progress in this field has been hampered by a relative lack of long and truly moisture-sensitive proxy records. In this study, we provide the first assessment of the dendroclimatic potential of Blue Intensity (BI) and partial ring-width measurements (latewood and earlywood width series) from a network of cold and drought-prone Pinus sylvestris L. sites in Sweden. Our results show that all tree-ring parameters and sites share a clear and strong sensitivity to warm-season precipitation. The ΔBI parameter, in particular, shows considerable potential for hydroclimate reconstructions, here permitting a cross-validated precipitation reconstruction capable of explaining 56% (1901–2010 period) of regional-scale warm-season high-frequency precipitation variance. Using ΔBI as an alternative to ring-width improves the predictive skill with nearly a 20 percentage points increase in explained variance, reduces signal instability over time as well as allows a broader seasonal window (May–July) to be reconstructed. Additionally, we found that earlywood BI also reflect a positive late winter through early summer temperature signal. These findings emphasize that tree-rings, and in particular wood density parameters such as from BI, are capable of providing fundamental information to advance our understanding of hydroclimate variability in regions with a cool and rather humid climate regime that traditionally has been overlooked in studies of past droughts. Increasing the spatio-temporal coverage of hydroclimate records in northern Europe, and taking full advantage of the opportunities offered by the wood densitometric properties should be considered a research priority.

Highlights

  • The drought vulnerability of the usually cool and wet region of northern Europe was highlighted in the extreme 2018 summer drought

  • We note that warm-season precipitation exhibits no significant persistence at interannual timescales (AR1 = − 0.14 when filtered with a 67-year spline) (Fig. 2)

  • We show that all of these wood components are clearly and strongly correlated to precipitation during the warm-season, and that they are capable of providing fundamental information to advance our understanding of past hydroclimate variability

Read more

Summary

Introduction

The drought vulnerability of the usually cool and wet region of northern Europe was highlighted in the extreme 2018 summer drought. The prospect of future global-scale climate change modifying exposure to drought warrants the urgent need for a better understanding of regional drought dynamics, associated physical mechanisms, and the range of conditions that can be expected in the future, as a sound basis for the successful implementation of mitigation and adaptation strategies (Toreti et al 2019; Trnka et al 2018). This includes a robust understanding of the sensitivity of the climate system to different forcings. Establishing a baseline variability unperturbed by significant anthropogenic forcing over decadal-to-centennial time-scales require a perspective that can be obtained only from pre-industrial hydroclimate information (Cook et al 2004, 2015, 2016; Marvel et al 2019)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.