Abstract

Steady-state bleaching delignification and brightening models were used to gauge how well elemental chlorine-free (ECF) bleach plants were using chlorine dioxide to bleach 25-kappa softwood brownstocks. Case 1 examined the D0(EOP)D1 portion of Mill 1’s five-stage sequence that brightens the pulp to 86% ISO. Case 2 studied the D0(EO)D1 portion of Mill 2’s four-stage sequence, which brightens the pulp to 82% ISO, and Case 3 re-examined the same bleach plant several years after it made improvements around the extraction stage. The models highlighted days in the previously mentioned cases where high bleach usage occurred, presumably because of high brownstock and/or extraction washer carryover, and days where bleach usage was normal. In Case 2, the model estimated that 10 kg of the 44 kg chlorine dioxide/metric ton pulp consumed in bleaching was likely reacting with washer carryover sources; approximately two-thirds of this extra consumption was assumed to be reacting with extraction filtrate. Changes that Mill 2 made (Case 3) reduced the unproductive chlorine dioxide usage from 10 to 5 kg/metric ton pulp. When the delignification and brightening models were simultaneously solved, the models predicted somewhat different optimized distributions of chlorine dioxide to D0 and D1 vs. actual values used in bleach plants. However, the forecasted chlorine dioxide totals agreed with the actual values when washer carryover sources were considered. This study showed the bleaching models could be used as hypothetical benchmarks for softwood ECF bleach plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call