Abstract

Because of the advantages of simplicity, cost-effectiveness and visibility, lateral-flow immunoassays (LFAs) have been widely used in the food safety field. However, the low sensitivity of LFAs needs to be solved. Nanozymes have amazing potential for application in biosensors due to their excellent and abundant enzyme-like characteristics. In this study, an Au@Pt nanozyme synthesized by a one-step method showed the higher affinity with TMB/H2O2 and higher catalytic efficiency than that of horseradish peroxidase (HRP). For the detection of streptomycin (STR), a typical aminoglycoside antibiotic, a novel LFA based on Au@Pt as a visual tag and an enhanced LFA based on the enzyme-like activity of Au@Pt by addition of the chromogenic substrate 3-amino-9-ethyl-carbazole (AEC) were established and compared with conventional LFA based on AuNPs. The qualitative limit of detection (LOD) was 1 ng mL−1 for the LFA based on Au@Pt as the visual tag and 0.1 ng mL−1 for the enhanced LFA based on the activity of Au@Pt, in comparison to 8 ng mL−1 for LFA based on AuNPs. Furthermore, the level of streptomycin in milk samples from Zhenjiang City was successfully evaluated by the novel LFA based on Au@Pt nanozyme. These results suggest that LFAs based on nanozymes are a promising and effective tool for food safety.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call