Abstract

After an enterprise builds a data warehouse, it can record information related to customer interactions using structured and unstructured data. The intention is to convert these data into useful information for decision-making to ensure business continuity. Hence, this study proposes a new Chinese text classification model for the project management office (PMO) using fuzzy semantics and text mining techniques. First, content analysis is performed on the unstructured data to convert important textual information and compile it into a keyword index. Next, a classification and decision algorithm for grey situations and fuzzy (GFuzzy) is used to categorize textual data by three characteristics: maximum impact, moderate impact, and minimum impact. The purpose is to analyze consumer behaviors for the accurate classification of customers. Lastly, a more effective marketing strategy is formulated to target the various customer combinations, growth models, and the best mode of service. A company database of interactions with customers is used to construct a text mining model and to analyze the decision process of its PMO. The purpose is to test the feasibility and validity of the proposed model so that enterprises are provided with better marketing strategies and PMO processes aimed at their customers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.