Abstract
This article proposes the maximum likelihood estimates based on bare bones particle swarm optimization (BBPSO) algorithm for estimating the parameters of Weibull distribution with censored data, which is widely used in lifetime data analysis. This approach can produce more accuracy of the parameter estimation for the Weibull distribution. Additionally, the confidence intervals for the estimators are obtained. The simulation results show that the BB PSO algorithm outperforms the Newton–Raphson method in most cases in terms of bias, root mean square of errors, and coverage rate. Two examples are used to demonstrate the performance of the proposed approach. The results show that the maximum likelihood estimates via BBPSO algorithm perform well for estimating the Weibull parameters with censored data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Statistics - Simulation and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.