Abstract

PurposeInter-individual variability in clinical endpoints and occurrence of potentially severe adverse effects represent an enormous challenge in drug development at all phases of (pre-)clinical research. To ensure patient safety it is important to identify adverse events or critical subgroups within the population as early as possible. Hence, a comprehensive understanding of the processes governing pharmacokinetics and pharmacodynamics is of utmost importance. In this paper we combine Bayesian statistics with detailed mechanistic physiologically-based pharmacokinetic (PBPK) models. On the example of pravastatin we demonstrate that this combination provides a powerful tool to investigate inter-individual variability in groups of patients and to identify clinically relevant homogenous subgroups in an unsupervised approach. Since PBPK models allow the identification of physiological, drug-specific and genotype-specific knowledge separately, our approach supports knowledge-based extrapolation to other drugs or populations.MethodsPBPK models are based on generic distribution models and extensive collections of physiological parameters and allow a mechanistic investigation of drug distribution and drug action. To systematically account for parameter variability within patient populations, a Bayesian-PBPK approach is developed rigorously quantifying the probability of a parameter given the amount of information contained in the measured data. Since these parameter distributions are high-dimensional, a Markov chain Monte Carlo algorithm is used, where the physiological and drug-specific parameters are considered in separate blocks.ResultsConsidering pravastatin pharmacokinetics as an application example, Bayesian-PBPK is used to investigate inter-individual variability in a cohort of 10 patients. Correlation analyses infer structural information about the PBPK model. Moreover, homogeneous subpopulations are identified a posteriori by examining the parameter distributions, which can even be assigned to a polymorphism in the hepatic organ anion transporter OATP1B1.ConclusionsThe presented Bayesian-PBPK approach systematically characterizes inter-individual variability within a population by updating prior knowledge about physiological parameters with new experimental data. Moreover, clinically relevant homogeneous subpopulations can be mechanistically identified. The large scale PBPK model separates physiological and drug-specific knowledge which allows, in combination with Bayesian approaches, the iterative assessment of specific populations by integrating information from several drugs.Electronic supplementary materialThe online version of this article (doi:10.1186/2193-9616-1-6) contains supplementary material, which is available to authorized users.

Highlights

  • Tailor-made therapeutic designs require a functional understanding of the processes governing the distribution of substances within an organism

  • We present a new approach applying Markov-chain Monte-Carlo (MCMC) to Bayesian-physiologically-based pharmacokinetic (PBPK) modeling for the assessment of inter-individual variability in groups of patients (Figure 1)

  • Parameters in the PBPK model can be divided into two types of parameters: (1) physiological parameters such as organ volumes or blood flow rates which are obtained from large collections of physiological data integrated into the PBPK software database and (2) substance-specific parameters describing the physicochemistry of a compound such as the molecular weight or the lipophilicity

Read more

Summary

Introduction

Tailor-made therapeutic designs require a functional understanding of the processes governing the distribution of substances within an organism. A mechanistic understanding of pharmacokinetics (PK) is essential in drug development to optimize the riskbenefit profile of a drug. This involves in particular the identification of high-risk subgroups in which an unfortunate combination of predisposition and non-optimal dosing schemes lead to potentially life-threatening side effects. In clinical practice, such subgroups have to be treated with individualized dosing schemes, which need to be designed and surveyed with adequate diagnostics

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.