Abstract
IntroductionSlow patient accrual in cancer clinical trials is always a concern. In 2021, the University of Kansas Comprehensive Cancer Center (KUCC), an NCI-designated comprehensive cancer center, implemented the Curated Cancer Clinical Outcomes Database (C3OD) to perform trial feasibility analyses using real-time electronic medical record data. In this study, we proposed a Bayesian hierarchical model to evaluate annual cancer clinical trial accrual performance. MethodsThe Bayesian hierarchical model uses Poisson models to describe the accrual performance of individual cancer clinical trials and a hierarchical component to describe the variation in performance across studies. Additionally, this model evaluates the impacts of the C3OD and the COVID-19 pandemic using posterior probabilities across evaluation years. The performance metric is the ratio of the observed accrual rate to the target accrual rate. ResultsPosterior medians of the annual accrual performance at the KUCC from 2018 to 2023 are 0.233, 0.246, 0.197, 0.150, 0.254, and 0.340. The COVID-19 pandemic partly explains the drop in performance in 2020 and 2021. The posterior probability that annual accrual performance is better with C3OD in 2023 than pre-pandemic (2019) is 0.935. ConclusionsThis study comprehensively evaluates the annual performance of clinical trial accrual at the KUCC, revealing a negative impact of COVID-19 and an ongoing positive impact of C3OD implementation. Two sensitivity analyses further validate the robustness of our model. Evaluating annual accrual performance across clinical trials is essential for a cancer center. The performance evaluation tools described in this paper are highly recommended for monitoring clinical trial accrual.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.