Abstract

Planet-induced substructures, like annular gaps, observed in dust emission from protoplanetary disks, provide a unique probe for characterizing unseen young planets. While deep-learning-based models have an edge in characterizing a planet’s properties over traditional methods, such as customized simulations and empirical relations, they lacks the ability to quantify the uncertainties associated with their predictions. In this paper, we introduce a Bayesian deep-learning network, “DPNNet-Bayesian,” which can predict planet mass from disk gaps and also provides the uncertainties associated with the prediction. A unique feature of our approach is that it is able to distinguish between the uncertainty associated with the deep-learning architecture and the uncertainty inherent in the input data due to measurement noise. The model is trained on a data set generated from disk–planet simulations using the fargo3d hydrodynamics code, with a newly implemented fixed grain size module and improved initial conditions. The Bayesian framework enables the estimation of a gauge/confidence interval over the validity of the prediction, when applied to unknown observations. As a proof of concept, we apply DPNNet-Bayesian to the dust gaps observed in HL Tau. The network predicts masses of 86.0 ± 5.5 M ⊕, 43.8 ± 3.3 M ⊕, and 92.2 ± 5.1 M ⊕, respectively, which are comparable to those from other studies based on specialized simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.