Abstract
We present a method to efficiently compute the eigenfunctions of classically chaotic systems. The key point is the definition of a modified Gram-Schmidt procedure which selects the most suitable elements from a basis set of scar functions localized along the shortest periodic orbits of the system. In this way, one benefits from the semiclassical dynamical properties of such functions. The performance of the method is assessed by presenting an application to a quartic two-dimensional oscillator whose classical dynamics are highly chaotic. We have been able to compute the eigenfunctions of the system using a small basis set. An estimate of the basis size is obtained from the mean participation ratio. A thorough analysis of the results using different indicators, such as eigenstate reconstruction in the local representation, scar intensities, participation ratios, and error bounds, is also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.