Abstract

The use of disulfide-rich backbone-cyclized polypeptides, as molecular scaffolds to design a new generation of bioimaging tools and drugs that are potent and specific, and thus might have fewer side effects than traditional small-molecule drugs, is gaining increasing interest among the scientific and in the pharmaceutical industries. Highly constrained macrocyclic polypeptides are exceptionally more stable to chemical, thermal and biological degradation and show better biological activity when compared with their linear counterparts. Many of these relatively new scaffolds have been also found to be highly tolerant to sequence variability, aside from the conserved residues forming the disulfide bonds, able to cross cellular membranes and modulate intracellular protein-protein interactions both in vitro and in vivo These properties make them ideal tools for many biotechnological applications. The present study provides an overview of the new developments on the use of several disulfide-rich backbone-cyclized polypeptides, including cyclotides, θ-defensins and sunflower trypsin inhibitor peptides, in the development of novel bioimaging reagents and therapeutic leads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.