Abstract

We experimentally investigate the influence of geometric aberrations in optical tweezers using back focal plane interferometry. We found that the introduction of coma aberrations causes significant modification to the Brownian motion of the trapped particle, producing an apparent cross-coupling between the in-plane aberrated axis and the weaker propagation axis. This coupling is evidenced by the emergence of a second dominant low frequency Lorentzian feature in the position power spectral density. The effect on Brownian motion was confirmed using a secondary unaberrated probe beam, ruling out the possibility of systematic optical effects related to the detection system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.