Abstract

Cadmium (Cd) and lead (Pb) have become serious soil contaminants in China. In this work, we immobilized B. thuringiensis HM-311 (a heavy metal resistant strain) using vinegar residue biochar and hydroxyapatite (HAP) to form BtHM-311@HAP@biochar calcium alginate beads. In aqueous solution, the beads respectively reduced 1000 mg/L Pb2+ to 14.59 mg/L and 200 mg/L Cd2+ to 5.40 mg/L within 20 h. Furthermore, the results of pot experiment showed that the BtHM-311@HAP@biochar beads reduced the bioavailability of Pb and Cd in soil. The accumulation of Pb2+ in rice decreased by 39.97% in shoots and 46.40% in roots, while that of Cd2+ decreased by 34.59 and 44.9%, respectively. Similarly, the accumulation of Pb2+ in corn decreased by 40.86% in shoots and 51.34% in roots, while that of Cd2+ decreased by 41.28 and 42.91%, respectively. The beads also increased the microbial community diversity in the rhizosphere soil. These findings indicate that BtHM-311@HAP@biochar beads may be applicable for the bioremediation of Cd- and Pb-contaminated farmland soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call