Abstract

This work was to investigate the effect of using Azolla (Azolla microphylla) leaf meal and phytonutrient powder on rumen fermentation efficiency and nutrient degradability using in vitro technique. All respective treatments were imposed in a 2 × 4 × 2 Factorial arrangements according to a completely randomized design (CRD). The first factor was two ratios of roughage to concentrate (R:C at 60:40, and 40:60), the second factor was Azolla (Azolla microphylla) powder (AMP) supplementation levels (0%, 3%, 6%, and 9% of the total substrate) and the third factor was Turmeric (Curcuma longa) powder (TUP) supplementation levels (0% and 2% of the total substrate). Cumulative gas production at 96 h, was affected by R:C and numerically increased by AMP and TUP supplementation (p<0.05). Gas production kinetics increased with the increasing ratio of concentrate and AMP supplementation whereas TUP supplement reduced gas production. In vitro DM degradability was remarkably increased (p<0.05) by the R:C ratio, AMP and TUP supplementation. However, increasing R:C ratio, AMP and TUP supplementation resulted in the concentration of propionate (C3) significantly increasing (p<0.05). Acetate (C2), C2:C3 ratio, and protozoal population were improved (p<0.05), while the methane production decreased. Under this study, the results were obtained under the supplementation level of 9% AMP and 2% TUP of total substrate, hence, the combined use is potentially beneficial. These results revealed a potential use of AMP and TUP as a supplement to improve rumen fermentation for ruminant feeding. Nevertheless, in vivo feeding trials should be further investigated using AMP and TUP as a source of protein and phytonutrient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.