Abstract

Speech rate and quantity reflect clinical state; thus automated transcription holds potential clinical applications. We describe two datasets where recording quality and speaker characteristics affected transcription accuracy. Transcripts of low-quality recordings omitted significant portions of speech. An automated syllable counter estimated actual speech output and quantified the amount of missing information. The efficacy of this method differed by audio quality: the correlation between missing syllables and word error rate was only significant when quality was low. Automatically counting syllables could be useful to measure and flag transcription omissions in clinical contexts where speaker characteristics and recording quality are problematic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.