Abstract
FastBlade is a research facility for testing large-scale composite and metal structures. Fatigue tests run on tidal turbine blades measure the mechanical response of a blade subject to the number of loading cycles that mimic the ones it will experience over its lifetime of a subsea deployment. To maximise its throughput by running the facility uninterruptedly, unmanned operation of the site should be possible. One of its key enablers is anomaly detection. Microphones are used as a non-specific and affordable sensing method. Using the audio data, we applied a Fast Continuous Wavelet Transform to extract the patterns recorded during normal and abnormal operations. These outputs are used to train a neural network autoencoder (NNA). The original image is reconstructed from the compressed vector in the latent space (LS) of the NNA, and the loss is computed to detect and quantify anomalies. The study's findings demonstrate the success of using audio data to detect short-lived anomalies despite limited information about the critical assets in the set-up and can be easily extrapolated to other systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International Conference on Condition Monitoring and Asset Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.