Abstract

The unresolved topographic expression of surfaces, surface roughness (SR), is a fundamental surface property that conveys useful information for a wide range of Earth and planetary sciences. Yet, this information is difficult to measure remotely because most spaceborne imagers have resolutions on the order of meters to hundreds of meters and SR can vary significantly below these scales. One way to measure SR is to exploit differential shadowing in stereo images, and in particular, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), with its nadir (3N) and backward-looking (3B) near-infrared channels. We have proposed a simple ratio of land-leaving radiance in those two channels as a measure of relative SR at scales <15 m/pixel. This “two-look” relative SR measure is simple, robust, and insensitive to atmospheric conditions, and thus ASTER 3B/3N ratio images are suggested as a useful and readily accessible tool for photo-interpretation. Moreover, one could calibrate the ratio data to physical parameters, such as RMS height, and translate to SR maps at 15 m/pixel resolution. Two calibration schemes enable this translation: empirical calibration against independent in situ roughness measurements and model-based calibration against forward simulations of ­two-look ratios from very high-resolution (<5 mm) digital elevation models of natural ­surfaces, measured with a ground-based light detection and ranging ­system. Here, we focus on the latter scheme that enables construction of calibration curves for any given viewing and illumination geometries encountered by ASTER. ASTER now ­provides a global archive of images, and the two-look approach with ASTER stereo data enables a unique quantitative mapping capability of SR at 15 m/pixel spatial resolution for almost anywhere on Earth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.