Abstract

The paper addresses the problem of e-customer behavior characterization based on Web server log data. We describe user sessions with the number of session features and aim to identify the features indicating a high probability of making a purchase for two customer groups: traditional customers and innovative customers. We discuss our approach aimed at assessing a purchase probability in a user session depending on categories of viewed products and session features. We apply association rule mining to real online bookstore data. The results show differences in factors indicating a high purchase probability in session for both customer types. The discovered association rules allow us to formulate some predictions for the online store, e.g. that a logged user who has viewed only traditional, printed books, has been staying in the store from 10 to 25 min, and has opened between 30 and 75 pages, will decide to confirm a purchase with the probability of more than 92 %.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.