Abstract

SummaryThe Euro US Dollar rate is one of the most important exchange rates in the world, making the analysis of its behavior fundamental for the global economy and for different decision‐makers at both the public and private level. Furthermore, given the market efficiency of the EUR/USD exchange rate, being able to predict the rate's future short‐term variation represents a great challenge. This study proposes a new framework to improve the forecasting accuracy of EUR/USD exchange rate returns through the use of an Artificial Neural Network (ANN) together with a Vector Auto Regressive (VAR) model, Vector Error Corrective model (VECM), and post‐processing. The motivation lies in the integration of different approaches, which should improve the ability to forecast regarding each separate model. This is especially true given that Artificial Neural Networks are capable of capturing the short and long‐term non‐linear components of a time series, which VECM and VAR models are unable to do. Post‐processing seeks to combine the best forecasts to make one that is better than its components. Model predictive capacity is compared according to the Root Mean Square Error (RMSE) as a loss function and its significance is analyzed using the Model Confidence Set. The results obtained show that the proposed framework outperforms the benchmark models, decreasing the RMSE of the best econometric model by 32.5% and by 19.3% the best hybrid. Thus, it is determined that forecast post‐processing increases forecasting accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.