Abstract
ABSTRACTCondition monitoring is the process of monitoring parameters expressing machinery condition, interpreting them for the identification of change which could indicate developing faults. Data processing is important in a ship condition monitoring software tool, as misinterpretation of data can significantly affect the accuracy and performance of the predictions made. Data for key performance parameters for a PANAMAX container ship main engine cylinder are clustered using a two-stage approach. Initially, the data is clustered using the artificial neural network (ANN)-self-organising map (SOM) and then the clusters are interclustered using the Euclidean distance metric into groups. The case study results demonstrate the capability of the SOM to monitor the main engine condition by identifying clusters containing data which are diverse compared to data representing normal engine operating conditions. The results obtained can be further expanded for application in diagnostic purposes, identifying faults, their causes and effects to the ship main engine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.