Abstract
AbstractBond between steel and concrete is one of the key aspects of structural design and its performance evaluation. In the past much research work has been focused on understanding bond deterioration owing to corrosion of reinforcement, however, there exists no nondestructive method to access the bond condition. In this regard, the presented experimental research work details the development of a nondestructive testing method to estimate the crack condition of concrete surrounding the steel reinforced by using ultrasonic pulse velocity test. In addition, a multilayer feedforward back propagation perceptron artificial neural network (ANN) is developed in order to avoid simplification assumptions for developing models to predict the cracking, owing to the nonlinear complex stress distribution at the steel‐concrete interface. The ANN is used to predict the crack width and to conduct sensitivity analysis of the various factors influencing the bond deterioration. A high accuracy level is achieved between the predicted and the experimental values with R2 of 0.97 and the most influential parameter is highlighted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.