Abstract

The energy use in buildings is highly influenced by outdoor temperature changes. In the contest of nowadays climate change, its impact on the energy sector is important and needs to be assessed. This study investigates how the heat consumption (HC) of the existing regional building stock, located in a temperate climate in the Northern part of Europe (Belgium), will be influenced by future climate changes. First, the Seasonal Auto-Regressive Integrated Moving Average (SARIMA), Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) models are used to predict the temperature until 2050 from historical data. Second, the UK Met Office equations are applied for computing the heating degree-days (HDD) considering the base temperature of 15°C. Finally, the HC of this building stock is projected until 2050 using the degree-days (DD) method. The decrease in HDD is about −11.76% from 2012 to 2050. The HC reduction, calculated at the regional scale, is reaching −8.82 %, −10.00%, and −11.26% for respectively residential, tertiary, and industrial buildings. The calculated HC is mapped on municipality, urban region, and province scales. The produced maps will help decision-makers set up efficient energy management strategies. The used methods can be replicated in other regions with the same kind of data. • Temperature forecasting up to 2050 using machine learning (ML) model SARIMA and deep learning (DL) models LSTM and GRU. • Heating degree-days estimation based on the minimum, maximum, average, and base temperature, using UK Met Office equations. • Estimation of buildings HC using the degree-days methods from 2012 to 2050. • Mapping HC of the regional building stock on 3 scales (municipality, urban region, and province). • The HC varies between −8.82% and −11.26% from 2012 to 2050 based on the GRU model for the Walloon building stock.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.