Abstract
Ischemic stroke (IS) is an uncommon but severe complication in patients undergoing percutaneous coronary intervention (PCI). Despite significant morbidity and economic cost associated with post PCI IS, a validated risk prediction model is not currently available. We aim to develop a machine learning model that predicts IS after PCI. We analyzed data from Mayo Clinic CathPCI registry from 2003 to 2018. Baseline clinical and demographic data, electrocardiography (ECG), intra/post-procedural data, and echocardiographic variables were abstracted. A random forest (RF) machine learning model and a logistic regression (LR) model were developed. The receiver operator characteristic (ROC) analysis was used to assess model performance in predicting IS at 6-month, 1-, 2-, and 5-years post-PCI. A total of 17,356 patients were included in the final analysis. The mean age of this cohort was 66.9 ± 12.5 years, and 70.7% were male. Post-PCI IS was noted in 109 patients (.6%) at 6 months, 132 patients (.8%) at 1 year, 175 patients (1%) at 2 years, and 264 patients (1.5%) at 5 years. The area under the curve of the RF model was superior to the LR model in predicting ischemic stroke at 6 months, 1-, 2-, and 5-years. Periprocedural stroke was the strongest predictor of IS post discharge. The RF model accurately predicts short- and long-term risk of IS and outperforms logistic regression analysis in patients undergoing PCI. Patients with periprocedural stroke may benefit from aggressive management to reduce the future risk of IS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.