Abstract
BackgroundA remote sensing technique was developed which combines a Geographic Information System (GIS); Google Earth, and Microsoft Excel to identify home locations for a random sample of households in rural Haiti. The method was used to select homes for ethnographic and water quality research in a region of rural Haiti located within 9 km of a local hospital and source of health education in Deschapelles, Haiti. The technique does not require access to governmental records or ground based surveys to collect household location data and can be performed in a rapid, cost-effective manner.MethodsThe random selection of households and the location of these households during field surveys were accomplished using GIS, Google Earth, Microsoft Excel, and handheld Garmin GPSmap 76CSx GPS units. Homes were identified and mapped in Google Earth, exported to ArcMap 10.0, and a random list of homes was generated using Microsoft Excel which was then loaded onto handheld GPS units for field location. The development and use of a remote sensing method was essential to the selection and location of random households.ResultsA total of 537 homes initially were mapped and a randomized subset of 96 was identified as potential survey locations. Over 96% of the homes mapped using Google Earth imagery were correctly identified as occupied dwellings. Only 3.6% of the occupants of mapped homes visited declined to be interviewed. 16.4% of the homes visited were not occupied at the time of the visit due to work away from the home or market days. A total of 55 households were located using this method during the 10 days of fieldwork in May and June of 2012.ConclusionsThe method used to generate and field locate random homes for surveys and water sampling was an effective means of selecting random households in a rural environment lacking geolocation infrastructure. The success rate for locating households using a handheld GPS was excellent and only rarely was local knowledge required to identify and locate households. This method provides an important technique that can be applied to other developing countries where a randomized study design is needed but infrastructure is lacking to implement more traditional participant selection methods.
Highlights
A remote sensing technique was developed which combines a Geographic Information System (GIS); Google Earth, and Microsoft Excel to identify home locations for a random sample of households in rural Haiti
Use of a geographic information system (GIS), a system for input, storage, manipulation, and output of geographic information provides a powerful tool for public health assessment and monitoring in remote locations and developing countries [1]
The list of homes and mapping were used to create laminated field sheets to be used in concert with handheld GPS units to locate homes for interviews and water sampling
Summary
A remote sensing technique was developed which combines a Geographic Information System (GIS); Google Earth, and Microsoft Excel to identify home locations for a random sample of households in rural Haiti. In rural Haiti, geospatial infrastructure often is lacking, making it difficult to implement GIS-based household water quality sampling, ethnographic surveys, and randomized study designs. This article describes a method that utilizes GIS; Google EarthTM (Google Inc., Mountain View, CA), and Microsoft Microsoft ExcelTM 2010 (Microsoft Corp., Redmond, WA) to map and select random households for ethnographic surveys and water sampling in rural Haiti. The technique is applicable to other developing countries, does not require access to address records or ground-based surveys to collect household location data, can be prepared prior to field work with common software packages, and requires only a handheld GPS to accomplish accurate field location of selected households
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.