Abstract

This paper focus on the study and the characterization of stability regions for linear systems with delayed states and subject to input saturation through anti-windup strategies. In particular, the synthesis of anti-windup gains in order to guarantee the stability of the closed-loop system for a region of admissible initial states as large as possible is addressed. Based on the modelling of the closed-loop system, resulting from the controller plus the anti-windup loop, as a linear time-delay system with a deadzone nonlinearity, stability conditions in an LMI form are stated, for both the delay independent and delay dependent contexts, by using quadratic functionals and a new sector condition. LMI-based optimization schemes for computing the anti-windup gains that lead to the maximization of the size of the region of stability associated to the closed-loop system are then proposed. The application of the technique and the trade-off between the size of the delay and the region of stability are illustrated by means of a numerical example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.