Abstract

The objective of this study was to determine the relationship of anti-Müllerian hormone (AMH) to ova production in various breeds of cattle in an embryo transfer program. Various factors that were evaluated included breed type, age, weight, body condition and flush history as to their influence on total ova recovery. The superovulation regimen called for CIDR (Controlled Internal Drug Release) insertion and a 2 cc injection of Combo (25 mg progesterone and 1.25 mg of estradiol per mL (2 cc IM injection)) on day 0. Day 4, FSH treatments were initiated in both AM and PM with decreasing amounts over the next four days. Day 6, along with FSH, prostaglandin was given in the AM and PM. On Day 7, a final FSH injection and CIDR removal were done in the AM. This resulted in estrus and AI on day 8 and collection of ova on day 15. Results were drawn from analyzing 369 animals; Angus n = 25, Black Brangus n = 43, Red Brangus n = 53, Brahman n = 103, Beefmaster n = 112, and Wagyu n = 33. Age of donors ranged from 1.6 years to 15.4 years at collection with an average age of 7.16 years of age. Analysis of results demonstrated that age clearly had a significant (P 0.05) on ova production. More importantly, we observed the total ova production was significantly (P < 0.05) associated with the AMH concentration (the greater the AMH concentration, the greater number of ova per flush).

Highlights

  • In cattle and various other farm animal species, embryo transfer is a method of replicating valuable genetics at an advanced rate of production

  • The present study aims to define the relationship of serum anti-Müllerian hormone (AMH) concentration and ova production from cattle in a superovulatory regimen

  • Err.: 0.154 2 × log-likelihood: −2411.523 The results clearly indicate that both age and AMH concentration have significant effect at the (P < 0.05) level on the total ova production

Read more

Summary

Introduction

In cattle and various other farm animal species, embryo transfer is a method of replicating valuable genetics at an advanced rate of production. Stimulation injections over several days, semen, and labor are all factors that go into the overall production of ova in a superovulation regimen. With 20% of donors producing 0.0 ova per flush [2], it would be beneficial to be able to predict which donor females will perform better than others in an embryo transfer program prior to trial and error, saving time and money. Variability can be attributed to the cow, season, follicle stimulating hormone regimen, and status of ovarian follicles at the time of initiation of FSH treatment, technical expertise, among other factors not yet identified [2] [3] [4] [5]

Objectives
Methods
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.