Abstract
Due to the numerous disadvantages that come with having anchors in the detection process, a lot of researchers have been concentrating on the design of object detectors that do not rely on anchors. In this work, we use anchor-free object detectors in the field of computer vision for surface defect detection. First, we constructed a surface defect detection dataset about real wind turbine blades, which was supplemented with several methods due to the lack of natural data. Next, we used a number of popular anchor-free detectors (CenterNet, FCOS, YOLOX-S, and YOLOV8-S) to detect surface defects in this blade dataset. After experimental comparison, YOLOV8-S demonstrated the best detection performance, with a high accuracy (79.55%) and a short detection speed (9.52 fps). All the upcoming experiments are predicated on it. Third, we examined how the attention mechanism added to various YOLOV8-S model positions affected the two datasets—our blade dataset and the NEU dataset—and discovered that the insertion methods on the two datasets are the same when focusing on comprehensive performance. Lastly, we carried out a significant amount of experimental comparisons.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.