Abstract
BackgroundThe purpose of the study is to determine the optical properties and their differences for normal human stomach mucosa/submucosa tissue in the cardiac orifice in vitro at 635, 730, 808, 890 and 980 nm wavelengths of laser.MethodsThe measurements were performed using a CCD detector, and the optical properties were assessed from the measurements using the spatially resolved reflectance, and nonlinear fitting of diffusion equation.ResultsThe results of measurement showed that the absorption coefficients, the reduced scattering coefficients, the optical penetration depths, the diffusion coefficients, the diffuse reflectance and the shifts of diffuse reflectance of tissue samples at five different wavelengths vary with a change of wavelength. The maximum absorption coefficient for tissue samples is 0.265 mm-1 at 980 nm, and the minimum absorption coefficient is 0.0332 mm-1 at 730 nm, and the maximum difference in the absorption coefficients is 698% between 730 and 980 nm, and the minimum difference is 1.61% between 635 and 808 nm. The maximum reduced scattering coefficient for tissue samples is 1.19 mm-1 at 635 nm, and the minimum reduced scattering coefficient is 0.521 mm-1 at 980 nm, and the maximum difference in the reduced scattering coefficients is 128% between 635 and 980 nm, and the minimum difference is 1.15% between 890 and 980 nm. The maximum optical penetration depth for tissue samples is 3.57 mm at 808 nm, and the minimum optical penetration depth is 1.43 mm at 980 nm. The maximum diffusion constant for tissue samples is 0.608 mm at 890 nm, and the minimum diffusion constant is 0.278 mm at 635 nm. The maximum diffuse reflectance is 3.57 mm-1 at 808 nm, and the minimum diffuse reflectance is 1.43 mm-1 at 980 nm. The maximum shift Δx of diffuse reflectance is 1.11 mm-1 at 890 nm, and the minimum shift Δx of diffuse reflectance is 0.507 mm-1 at 635 nm.ConclusionThe absorption coefficients, the reduced scattering coefficients, the optical penetration depths, the diffusion coefficients, the diffuse reflectance and the shifts of diffuse reflectance of tissue samples at 635, 730, 808, 890 and 980 nm wavelengths vary with a change of wavelength. There were significant differences in the optical properties for tissue samples at five different wavelengths (P < 0.01).
Highlights
The purpose of the study is to determine the optical properties and their differences for normal human stomach mucosa/submucosa tissue in the cardiac orifice in vitro at 635, 730, 808, 890 and 980 nm wavelengths of laser
Knowledge of optical properties for the human stomach mucosa/submucosa tissues in the visible and near infrared (NIR) wavelength range is of great importance in medical applications using light [1,2], for example, laser coagulation for treatment of early gastric cancer with intramucosal invasion, laser ablation therapy of the submucosal gastric cancer [3], photodynamic ablation therapy of early cancers of the stomach [4], gastrointestinal (GI) diagnosis by the standard white light endoscopy (WLE) and endoscopic diagnosis of premalignant gastrointestinal lesions by fluorescence endoscopic imaging and spectroscopy [5,6,7], and the recently developed optical coherence tomography (OCT) [8,9,10] has been reported to image the GI tissues in vitro and in vivo [1113]
The optical properties are represented by the absorption coefficient μa, the scattering coefficient μs and the anisotropy factor g. since the optical detecting and optical imaging are based on selective differences existing in optical properties of healthy and pathological tissues, it is important to diagnostic purpose
Summary
The purpose of the study is to determine the optical properties and their differences for normal human stomach mucosa/submucosa tissue in the cardiac orifice in vitro at 635, 730, 808, 890 and 980 nm wavelengths of laser. The proposed techniques range from continuous wave [18,19] to frequencydomain [20,21] or time-depended measurements of scattered light [22,23] These techniques are based on the determination of optical properties of scattering media. We focus in this paper on the optical properties of normal human stomach mucosa/submucosa tissue in the cardiac orifice at the visible and near-infrared wavelength range. The results were analyzed and compared from these experimental data we obtained
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.