Abstract
This paper concerns the generation of support vector machine classifiers for solving the pattern recognition problem in machine learning. A method is proposed based on interior-point methods for convex quadratic programming. This interior-point method uses a linear preconditioned conjugate gradient method with a novel preconditioner to compute each iteration from the previous. An implementation is developed by adapting the object-oriented package OOQP to the problem structure. Numerical results are provided, and computational experience is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.