Abstract

Gómez-Carmona, CD, Bastida-Castillo, A, González-Custodio, A, Olcina, G, and Pino-Ortega, J. Using an inertial device (WIMU PRO) to quantify neuromuscular load in running: reliability, convergent validity, and influence of type of surface and device location. J Strength Cond Res 34(2): 365-373, 2020-Currently, the use of accelerometers in sport is increasing, and thus, the devices are required to be valid and reliable. This study tested (a) the reliability and validity of WIMU PRO accelerometers to measure PlayerLoad (PL) and (b) the influence of speed, inertial device location, and type of surface where the incremental test is performed. Twenty resistance-trained men (age: 27.32 ± 6.65 years; height: 1.74 ± 0.03 m; body mass: 68.96 ± 4.37 kg; and body mass index: 22.76 ± 1.11 kg·m) volunteered to participate in the study that lasted 5 weeks. Four progressive incremental tests were performed in treadmill and athletic track conditions. External load variable (PL) and physiological variables (heart rate [HR] and SmO2) were recorded by 4 WIMU PRO inertial devices (scapulae, center of mass, knee, and ankle), a GARMIN HR band, and a MOXY near-infrared spectroscopy device, respectively. High reliability was found on both types of surface, showing the best values at the ankle (treadmill: intraclass correlation coefficient [ICC] = 0.99, coefficient of variation [CV] = 4.65%; track: ICC = 0.96, CV = 6.54%). A nearly perfect convergent validity was shown with HRAVG (r = 0.99) and a moderate one with SmO2 (r = -0.69). Significant differences in the PL variable between surfaces were reported in all locations except the scapulae (p = 0.173), and the higher values were found on the track. In the analysis per location, the ankle location reported the highest values at all speeds and on the 2 surfaces analyzed. Assessment needs to be individualized, due to the great variability of gait biomechanics among subjects. The accelerometer location should be chosen according to the purpose of the measurement, with the ankle location being recommended for neuromuscular load analysis in running.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.