Abstract

The transport of particulate matter (PM) and chemical species is an essential mechanism for determining the fate of PM pollutants and their effects. To determine source transport quantitatively, an ambient PM2.5 dataset from a megacity in China was analysed using a novel method called “Source Directional Apportionment” (SDA). The SDA method is developed in this work to quantify contributions of each source category from various directions. The three steps of SDA are (1) to estimate source categories and time series of source contributions to PM with a factor analysis model, (2) to identify directions by trajectory cluster analysis and (3) to quantify source directional contributions for each source category by combining the time series of source contributions to the back trajectories in each direction. For PM2.5 in Chengdu, crustal dust, vehicular exhaust, coal combustion and secondary sulphate are all important contributors to PM; secondary nitrate and cement dust are relatively less influential. Four potential source directions were identified in Chengdu during the sampling period from 2009 to 2011. The percentages of source directional contributions from Directions 1–4 (northeast, southwest to south, southwest and west) were estimated as follows: crustal dust (7.9%, 9.1%, 6.4% and 6.2%, respectively), cement dust (1.0%, 1.2%, 1.3% and 1.1%, respectively), vehicular exhaust (6.4%, 6.0%, 5.6% and 7.0%, respectively), secondary sulphate (5.1%, 5.2%, 5.6% and 8.6%, respectively) and secondary nitrate (2.0%, 2.4%, 2.5% and 2.3%, respectively). Finally, the source directional contributions to important chemical species were quantified to determine their transport from sources to receptor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.