Abstract

In order to improve the reliability and safety of railway dangerous goods transportation system (RDGTS), and prevent the similar accidents happened again, an easier operated, dynamic, systemic and quantitative approach called expanded Safety Failure Event Network (SFEN) is proposed to analyze the past typical RDGTS accidents. The expanded SFEN focuses on transfer the traditional safety occurrence process into a visible Accident Analysis Network (AAN) platform. To improve the previous SFEN approach, the risk factors categories are expanded including Human actions, Technical failure, Nature of transported goods, Environment factors, Management failure and External factors of the system. An AAN is established by using the risk factors as the nodes and using the interactions among these risk factors as the edges, the RDGTS risk analysis problem is transferred into a quantitative network structure analysis problem from a network perspective. After that, based on the AAN, TouchGraph and NetMiner are applied to calculate and rank the centrality degree of each sub-risk factor (or sub-heading) in a network. A RDGTS accident happened in 2001 is analyzed, the results show that TouchGraph and NetMiner can present the same interactions and importance of sub-risk factors (or sub-headings) through visible circle images in the platform, NetMiner is more digital because the results can be presented as the centrality degree values. The greatest contributed sub-risk factors are Equipment maintenance failure and Railway inspection agency failure, followed by cargo packaging problems, illegal entrainment problem. Misbehaves of the freight inspector with centrality degree 0.523810 shows that this sub-heading has the greatest contribution to the accident.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call