Abstract

Vegetal fibers are prominent reinforcements for polymer composite materials, considering their properties and application possibilities. In particular, thermal degradation behavior is crucial for determining an application subjected to a temperature range. Methods to predict properties are a trend in materials science and have the main advantage of saving cost and time. For this reason, in the present study, an artificial neural network (ANN) approach was used to predict the thermal degradation curves. The heating rate of 10 °C·min− 1 was carried out to train the network with 12 hidden layers and optimal training dataset of 60. Other heating rates were simulated and showed an excellent agreement with the experimental data. The coefficient of determination was R2 > 0.99 for all sources of biomass, exhibiting appropriate predictive fit with error following the sequence: ramie (1.15 %) < kenaf (1.33 %) < curaua (1.83 %) < jute (1.97 %). In conclusion, ANNs can learn from their data and optimize processing, formulations, predict properties, and other input data combinations. The predictive curves present high reliability with the experimental fit allowing the prediction of the mass loss for different temperatures versus the heating rate set.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.