Abstract
Orthoptera are insects with excellent olfactory sense abilities due to their antennae richly equipped with receptors. This makes them interesting model organisms to be used as biosensors for environmental and agricultural monitoring. Herein, we investigated if the house cricket Acheta domesticus can be used to detect different chemical cues by examining the movements of their antennae and attempting to identify specific antennal displays associated to different chemical cues exposed (e.g., sucrose or ammonia powder). A neural network based on state-of-the-art techniques (i.e., SLEAP) for pose estimation was built to identify the proximal and distal ends of the antennae. The network was optimised via grid search, resulting in a mean Average Precision (mAP) of 83.74%. To classify the stimulus type, another network was employed to take in a series of keypoint sequences, and output the stimulus classification. To find the best one-dimensional convolutional and recurrent neural networks, a genetic algorithm-based optimisation method was used. These networks were validated with iterated K-fold validation, obtaining an average accuracy of 45.33% for the former and 44% for the latter. Notably, we published and introduced the first dataset on cricket recordings that relate this animal’s behaviour to chemical stimuli. Overall, this study proposes a novel and simple automated method that can be extended to other animals for the creation of Biohybrid Intelligent Sensing Systems (e.g., automated video-analysis of an organism’s behaviour) to be exploited in various ecological scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Machine Learning and Cybernetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.