Abstract

There is an increasing amount of multimedia content available to end users. Recommender systems help these end users by selecting a small but relevant subset of items for each user based on her/his preferences. This paper investigates the influence of affective metadata (metadata that describe the user's emotions) on the performance of a content-based recommender (CBR) system for images. The underlying assumption is that affective parameters are more closely related to the user's experience than generic metadata (e.g. genre) and are thus more suitable for separating the relevant items from the non-relevant. We propose a novel affective modeling approach based on users' emotive responses. We performed a user-interaction session and compared the performance of the recommender system with affective versus generic metadata. The results of the statistical analysis showed that the proposed affective parameters yield a significant improvement in the performance of the recommender system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.