Abstract

Dissolved oxygen (DO) in the overlying water is important in influencing internal phosphorus (P) release. However, the potentially associative effect of DO on the P adsorption and immobilization by La-modified bentonite (LMB) has not been quantified. This 80-day incubation experiment showed the synergistic effect of DO and LMB in the overlying water, which caused the reduction of dissolved inorganic phosphorus (DIP) by 51% (DO = 5 mg L−1) and 77% (DO = 7 mg L−1) on average, respectively, compared with the DO of 3 mg L−1. In addition, the DIP in the pore water decreased from 1.12 mg P L−1 (control) to 0.014 mg P L−1 (5 mg L−1) and 0.004 mg P L−1 (7 mg L−1). Besides, the Fe2+ and NH4+ concentrations were also reduced significantly in the pore water, suggesting the rise in the redox potential in the sediment, which helped P immobilization. Chemical P-fractionation experiments indicate that the Fe-P reduction in sediment was the most significant, reduced by 14%, followed by NH4Cl-P (12%), causing a reduction by 13% (3 mg L−1), 23% (5 mg L−1) and 27% (7 mg L−1) of mobile P in the surface 7-cm sediment, respectively. However, the released P ions were rapidly adsorbed by the Al ions and Ca ions, as well as their compounds, thereby leading to the obvious rise in inert P in the sediment. Accordingly, it was suggested that DO and LMB had a synergistic effect on external P adsorption and immobilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.