Abstract
This research paper delves into the exploration of computer vision technology and digital twins as a means to enhance security measures in educational institutions. The study primarily focuses on the creation of a virtual replica of the first floor of a school and the integration of a person detection algorithm with the existing surveillance cameras. By leverag- ing the capabilities of the digital twin and real-time monitoring, comprehensive surveillance of the premises becomes feasible, resulting in simplified security operations. The paper sheds light on the significant potential of training neural networks for specific security tasks, such as the identification of weapons or the detection of anomalies in human behavior. These trained neural networks can be seamlessly integrated into the digital twin, thus ensuring public safety within the educational environment. The findings of this study provide substantial evidence for the effectiveness of computer vision technology and digital twins in bolstering security measures. The ability to create a virtual representation of the school’s first floor enables com- prehensive monitoring and surveillance, aiding in the prevention and prompt response to se- curity incidents. The integration of person detection algorithms further enhances the system’s capabilities by automatically identifying and tracking individuals within the premises. Addi- tionally, the deployment of neural networks for specialized security tasks adds an extra layer of protection, enabling the identification of potential threats and the detection of abnormal behavior patterns. By employing computer vision technology and digital twins, educational institutions can establish an advanced security infrastructure that optimizes monitoring, en- hances situational awareness, and ensures a safer environment for students, staff, and visitors. The research presented in this paper highlights the tremendous potential and practical impli- cations of these technologies in the realm of educational security.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.