Abstract

Remote sensing fractional vegetation cover (FVC) requires both finer-resolution and high-frequency in climate and ecosystem research. The increasing availability of finer-resolution (≤ 30 m) remote sensing data makes this possible. However, data from different satellites have large differences in spatial resolution, spectral response function, and so on, making joint use difficult. Herein, we showed that the vegetation index (VI)-based mixture model with the appropriate VI values of pure vegetation (Vv) and bare soil (Vs) from the MODIS BRDF product via the multi-angle VI method (MultiVI) was feasible to estimate FVC with multiple satellite data. Analyses of the spatial resolution and spectral response function differences for MODIS and other satellites including Landsat 8, Chinese GF 1, and ZY 3 predicted that (1) the effect of Vv and Vs downscaling on FVC estimation uncertainty varied from satellite to satellite due to the positioning differences, and (2) after spectral normalization, the uncertainty (RMSDs) for FVC estimation decreased by ~2.6% compared with the results without spectral normalization. FVC estimation across multiple satellite data will help to improve the spatiotemporal resolution of FVC products, which is an important development for numerous biophysical applications. Herein, we proved that the VI-based mixture model with Vv and Vs from MultiVI is a strong candidate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call