Abstract

Top-N item recommendation is one of the important tasks of recommenders. Collaborative filtering is the most popular approach to building recommender systems which can predict ratings for a given user and item. Collaborative filtering can be extended for top-N recommendation, but this approach does not work accurately for cold start users that have rated only a very small number of items. In this paper we propose novel methods exploiting a trust network to improve the quality of top-N recommendation. The first method performs a random walk on the trust network, considering the similarity of users in its termination condition. The second method combines the collaborative filtering and trust-based approach. Our experimental evaluation on the Epinions dataset demonstrates that approaches using a trust network clearly outperform the collaborative filtering approach in terms of recall, in particular for cold start users.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.