Abstract

In this work, we investigated the phase transformation of γ-Al2O3 to θ-Al2O3 by ethanol TPD and XRD. Ethanol TPD showed remarkable sensitivity toward the surface structures of the aluminas studied. Maximum desorption rates for the primary product of ethanol adsorption, ethylene, were observed at 225, 245, and 320 °C over γ-, θ-, and α-Al2O3, respectively. Ethanol TPD over a γ-Al2O3 sample calcined at 800 °C clearly shows that the surface of the resulting material possesses θ-alumina characteristics, even though only the γ-alumina phase was detected by XRD. These results strongly suggest that the γ-to-θ phase transformation of alumina initiates at oxide particle surfaces. The results obtained are also consistent with our previous finding that the presence of penta-coordinated Al3+ sites, formed on the (100) facets of the alumina surface, is strongly correlated with the thermal stability of γ-alumina.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.