Abstract

This paper proposes a new approach to model and analyze erect posture, based on a spherical inverted pendulum which is used to mimic the body posture. The pendulum oscillates in two directions, [Formula: see text] and [Formula: see text], from which the mathematical model was derived and two torque components in oscillation directions were introduced. They are estimated using stabilometric data acquired by a foot pressure mapping system. The model was quantitatively investigated using data from 19 participants, who were first were classified into three groups, according to the foot arch-index. Stabilometric data were then collected and fed into the model to estimate the torque’s components. The components were statistically processed, and the results revealed that the components in direction [Formula: see text] are able to reject intrinsic perturbation. The frequency spectrum of the components in direction [Formula: see text] was processed using fast Fourier transform, and the results showed the feasibility of the component in segregating foot deformities. In addition, high-arched foot cases tended to be more stable than other cases because the exerted torque is less. The torque profiles estimated by our model were compared with the profiles derived from a classical inverted pendulum. In most cases, our results showed a significant change ( t-test p < 0.05).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.