Abstract
In this study, we present the feasibility of using gravity measurements made with a small inertial navigation system (INS) during in situ experiments, and also mounted on an unmanned aerial vehicle (UAV), to recover local gravity field variations. The INS operated is the SPATIAL one developed by Advanced Navigation, which has three-axis accelerometers. When the temperature bias is corrected, these types of INS are powerful enough to present the periodic signal corresponding to the solid Earth tides. There is also a clear correlation with the data measured at different altitudes by a CG5 gravimeter. However, these data were recorded on static points, so we also studied the INS in a moving platform on a UAV. Because there are a lot of vibrations recorded by the INS (wind, motor, on-board computer), the GPS and accelerometric data need to be filtered extensively. Once the data are corrected so they do not show thermal bias and low-pass filtered, we take the second derivative of the altitude (GPS) data to find the radial accelerometry of the drone and compare it to the radial accelerometry measured directly by the INS, in order to isolate the accelerometric signal that is related to the area that is being studied and the altitude. With a high enough precision, this method could be used to obtain the gravity variations due to the topography and density variations in the ground.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.