Abstract

The use of a priori knowledge in the alignment of targeted sequencing data is investigated using computational experiments. Adapting a Needleman–Wunsch algorithm to incorporate the genomic position information from the targeted capture, we demonstrate that alignment can be done to just the target region of interest. When in addition use is made of direct string comparison, an improvement of up to a factor of 8 in alignment speed compared to the fastest conventional aligner (Bowtie) is obtained. This results in a total alignment time in targeted sequencing of around 7 min for aligning approximately 56 million captured reads. For conventional aligners such as Bowtie, BWA or MAQ, alignment to just the target region is not feasible as experiments show that this leads to an additional 88% SNP calls, the vast majority of which are false positives (∼92%).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.