Abstract

The PhoRP two-component system (TCS), one of the most important signaling pathways in Bacillus subtilis, regulates cell physiological reactions mainly under phosphate starvation conditions. The mechanism by which PhoRP TCS regulates resistance towards antibiotics in B. subtilis strain NCD-2 was investigated in this study. Using phenotype microarray (PM) technology, the susceptibility of B. subtilis to 240 antimicrobial compounds was compared among the wild-type strain NCD-2, the phoR-null mutant (MR), and the phoP-null mutant (MP). Compared with the wild type, the MR mutant was more resistant to 13 antibiotics with different functions, and the MP mutant was more resistant to 14 antibiotics, of which 8 were 30S/50S ribosome-targeted. To investigate the molecular mechanisms involved in changing the level of antibiotic resistance, transcriptional analysis was performed to compare the differentially expressed genes among the wild-type strain and the MR and MP mutants. Compared with the wild-type strain, 294 genes were differentially expressed in the MR mutant, including 97 up-regulated genes and 197 down-regulated genes. Most of the differently expressed genes were associated with carbohydrate mechanism, amino acid mechanism, ABC-transporters and phosphotransferase systems. A total of 212 genes were differentially expressed in the MP mutant, including 10 up-regulated genes and 202 down-regulated genes, and most were associated with ribosome synthesis, amino acid metabolism, carbohydrate metabolism and ABC-transporters. The khtSTU operon (encoding the K+ efflux pump) that was up-regulated in the MP mutant was deleted by in-frame deletion in the MP mutant. The phoP and khtSTU operon double mutant MPK showed decreased antibiotic resistance to doxycycline, chlortetracycline, spiramycin, puromycin, and paromomycin when compared with the MP mutant. Thus, the results indicated that the khtSTU operon was responsible for the PhoP-mediated multiple antibiotic resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.