Abstract

Precision Doppler spectroscopy serves as an important tool for Radial Velocity (RV) measurements by observing Doppler shift in the stellar spectrum, which are used for various applications. Passively stabilized Fabry-Perot (FP) etalon based wavelength calibration is one of the techniques used for Doppler spectroscopy. The FP is kept in a pressure and temperature-stabilized environment for it to produce equispaced transmission lines. Since the FP is stable and the line shape is invariant across wavelength pass band, they can be used to determine the spectrograph’s instrumental artifacts and hence analyze spectrograph performance. Knowledge of instrument effects also helps in better prediction of the wavelength calibration model for the spectrograph. We have tested a passively stabilized FP on Vainu Bappu Telescope (VBT) Echelle spectrograph and Hanle Echelle spectrograph (HESP) and observed field curvature and distortion in both. We are analyzing the artifacts introduced and correcting for the same using image processing methods to compensate for the same in wavelength calibration model developed for the FP-based calibrator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.