Abstract

Swine leukocyte antigens (SLAs) (i.e. swine major histocompatibility complex proteins) conduct a fundamental role in swine immunity. To generate a protective vaccine across an outbred species, such as pigs, it is critical that epitopes that bind to diverse SLA alleles are used in the vaccine development process. We introduced a new strategy for epitope prediction. We employed molecular dynamics simulation to identify key amino acids for interactions with epitopes. We developed an algorithm wherein each SLA-1 is compared to a crystalized reference allele with unique weighting for non-conserved amino acids based on R group and position. We then performed homology modeling and electrostatic contact mapping to visualize how relatively small changes in sequences impacted the charge distribution in the binding site. We selected eight diverse SLA-1 alleles and performed homology modeling followed, by protein-peptide docking and binding affinity analyses, to identify porcine reproductive and respiratory syndrome virus matrix protein epitopes that bind with high affinity to these alleles. We also performed docking analysis on the epitopes identified as strong binders using NetMHCpan 4.1. Epitopes predicted to bind to our eight SLA-1 alleles had equivalent or higher energetic interactions than those predicted to bind to the NetMHCpan 4.1 allele repertoire. This approach of selecting diverse SLA-1 alleles, followed by homology modeling, and docking simulations, can be used as a novel strategy for epitope prediction that complements other available tools and is especially useful when available tools do not offer a prediction for SLAs/major histocompatibility complex. The data underlying this article are available in the online Supplementary Material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call