Abstract

High phosphorus risk in intensive agricultural regions, which threatens an increasing number of water bodies within the regions, is driven by the nitrogen-phosphorus ratio (N:P ratio). The mechanism remains unclear, however. Most nutrient studies are based on local-scale field trials, which failed to identify the geographical factors that drive phosphorus accumulation at the larger scale of a watershed. To address this issue, we adopted a large-scale, remote-sensing-driven model to simulate the N:P ratio in the soil of the Sanjiang Plain, one of the most important commercial grain bases of China. A grid-random sampling method was employed to test the validity of the model. The results show that 35% of the higher N:P ratios were converted to lower ratios in old cultivated land where the concentration of soil phosphorus increased by 1–2 times over 11years (2000–2010); however, in the new cropland cultivated from forestland, grassland and wetland, 18% of the lower N:P ratios were converted to higher ratios, with soil phosphorus concentration increased slightly. Higher N:P ratios come from greater nitrogen input into the new cropland soil, which reduces soil pH and then enhances phosphorus accumulation, thus increasing the phosphorus risk. We find that the variation in land-use types and the excessive input of anthropogenic fertilizers are the two dominant factors influencing the N:P ratio. Intensive anthropologic activities changed traditional knowledge on the relationship between the N:P ratio and phosphorus accumulation, and further necessitated large-scale research on nutrients in intensive agricultural regions. The finding can shed new light on phosphorus management and non-point source pollution control in intensive agricultural areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call