Abstract

PurposeWe investigated if a neural network could be used to predict the change in mean heart dose when a patient's heart deviates from its planned position during radiotherapy treatment. MethodsPredictions were made based on parameters available at the time of treatment planning. The dose prescription, deep inspiration breath-hold (DIBH) amplitude, heart volume, lung volume, V90% and mean heart dose were used to predict the increase in dose to the heart when a shift towards the treatment field was undertaken. The network was trained using 3 mm, 5 mm and 7 mm shifts in heart positions for 50 patients' giving 150 data points in total. The neural network architecture was also varied to find the most optimal network design. The final neural network was then tested using cross-validation to evaluate the model's ability to generalise to new data. ResultsThe optimal neural network found was comprised of a single hidden layer of 30 neurons. Based on twenty train/test splits, 94% of all prediction errors were below 0.2 Gy, 97.3% were below 0.3 Gy and 100% were below 0.5 Gy. The average RMSE and maximum prediction error over all train/test splits were 0.13 Gy and 0.5 Gy respectively. ConclusionsOur approach using a neural network provides a clinically acceptable estimate of the increase in Mean Heart Dose (MHD), without the need for further imaging, contouring or evaluation. The trained neural network gives clinicians the information and tools required to evaluate what shift in heart position would be acceptable and which scenarios require immediate action before treatment continues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.