Abstract
A soil water and energy budget model coupled with a microwave emission model (MICRO-SWEAT) was used to predict the diurnal courses of soil surface water content and microwave brightness temperatures during a number of drying cycles on soils of contrasting texture that were either cropped or bare. The parameters describing the soil water retention and conductivity characteristics [saturated hydraulic conductivity, air entry potential, bulk density, and the exponent (b) describing the slope of the water release curve] had a strong influence on the modeled bare-soil microwave brightness temperatures. These parameters were varied until the error between the remotely sensed and modeled brightness temperatures was minimized, leading to their predicted values. These predictions agreed with the measured values to within the experimental error. The modeled brightness temperature for a soybean-covered soil was sensitive to some of the vegetation parameters (particularly to the optical depth), in addition to the soil hydraulic properties. Preliminary findings suggest that, given an independent estimate of the vegetation parameters, it may still be possible to estimate the soil hydraulic properties under a moderate vegetation canopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.